
msql

msql ii

COLLABORATORS

TITLE :

msql

ACTION NAME DATE SIGNATURE

WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

msql iii

Contents

1 msql 1

1.1 msql.doc . 1

1.2 msql.library/--background-- . 2

1.3 msql.library/--rexxhost-- . 4

1.4 msql.library/MsqlAddMHookA . 5

1.5 msql.library/MsqlAllocConnection . 6

1.6 msql.library/MsqlClose . 6

1.7 msql.library/MsqlConnect . 7

1.8 msql.library/MsqlCopyDB . 8

1.9 msql.library/MsqlCreateDB . 8

1.10 msql.library/MsqlDataSeek . 9

1.11 msql.library/MsqlDateOffset . 10

1.12 msql.library/MsqlDateToUnixTime . 11

1.13 msql.library/MsqlDiffDates . 12

1.14 msql.library/MsqlDiffTimes . 12

1.15 msql.library/MsqlDropDB . 13

1.16 msql.library/MsqlFetchField . 14

1.17 msql.library/MsqlFetchRow . 15

1.18 msql.library/MsqlFieldSeek . 15

1.19 msql.library/MsqlFreeConnection . 16

1.20 msql.library/MsqlFreeResult . 17

1.21 msql.library/MsqlGetCharConf . 17

1.22 msql.library/MsqlGetErrMsg . 18

1.23 msql.library/MsqlGetHostInfo . 19

1.24 msql.library/MsqlGetIntConf . 19

1.25 msql.library/MsqlGetProtoInfo . 20

1.26 msql.library/MsqlGetSequenceInfo . 20

1.27 msql.library/MsqlGetServerInfo . 21

1.28 msql.library/MsqlGetServerStats . 21

1.29 msql.library/MsqlListDBs . 22

msql iv

1.30 msql.library/MsqlListFields . 23

1.31 msql.library/MsqlListIndex . 24

1.32 msql.library/MsqlListTables . 25

1.33 msql.library/MsqlLoadConfigFile . 26

1.34 msql.library/MsqlMoveDB . 26

1.35 msql.library/MsqlNumFields . 27

1.36 msql.library/MsqlNumRows . 28

1.37 msql.library/MsqlQuery . 29

1.38 msql.library/MsqlReloadAcls . 30

1.39 msql.library/MsqlRemMHook . 30

1.40 msql.library/MsqlSelectDB . 31

1.41 msql.library/MsqlShutdown . 32

1.42 msql.library/MsqlStoreResult . 32

1.43 msql.library/MsqlSumTimes . 33

1.44 msql.library/MsqlTimeToUnixTime . 34

1.45 msql.library/MsqlUnixTimeToDate . 34

1.46 msql.library/MsqlUnixTimeToTime . 35

msql 1 / 36

Chapter 1

msql

1.1 msql.doc

--background--

--rexxhost--

MsqlAddMHookA()

MsqlAllocConnection()

MsqlClose()

MsqlConnect()

MsqlCopyDB()

MsqlCreateDB()

MsqlDataSeek()

MsqlDateOffset()

MsqlDateToUnixTime()

MsqlDiffDates()

MsqlDiffTimes()

MsqlDropDB()

MsqlFetchField()

MsqlFetchRow()

MsqlFieldSeek()

MsqlFreeConnection()

MsqlFreeResult()

msql 2 / 36

MsqlGetCharConf()

MsqlGetErrMsg()

MsqlGetHostInfo()

MsqlGetIntConf()

MsqlGetProtoInfo()

MsqlGetSequenceInfo()

MsqlGetServerInfo()

MsqlGetServerStats()

MsqlListDBs()

MsqlListFields()

MsqlListIndex()

MsqlListTables()

MsqlLoadConfigFile()

MsqlMoveDB()

MsqlNumFields()

MsqlNumRows()

MsqlQuery()

MsqlReloadAcls()

MsqlRemMHook()

MsqlSelectDB()

MsqlShutdown()

MsqlStoreResult()

MsqlSumTimes()

MsqlTimeToUnixTime()

MsqlUnixTimeToDate()

MsqlUnixTimeToTime()

1.2 msql.library/--background--

msql 3 / 36

The msql.library is an Amiga shared library that grant access ←↩
to a mSQL

database engine over a TCP/IP network (ie include the mSQL client part).

MsqlNumRows()
&

MsqlNumFields()
are macros #defined in libraries/msql.h

Please refer to the original documentation for more information.

News from Version 5.3:
- Include 2.0.7 code changes.

News from Version 5.2:
- Fix a bug that make MsqlUnixTimeToDate unusable.
- Some code changes and bugs fix from the original

API (V2.0.5 & 2.0.6)

News from Version 5:
- Some ARexx host bugs removed.
- ARexx allocation trace (Free all ARexx allocation with one

function).
- Add a hook monitoring system.

News from Version 4:
- ARexx host.

News from Version 3:
- Support the final mSQL2 protocol.

News from Version 2:
- Client code included into the library (no external program required

any more).
- Functions that don’t require a "real" connection like

MsqlDataSeek()
don’t need a MsqlConnection argument anymore (this ←↩

argument was
needed with the previous version to exchange information with the
external program).

Requirement:
- A running TCP/IP stack (AmiTCP, Miami) to access distant DB server

or mUSD to only access a local mSQL server.

Note:
- the ixemul.library is not used any more.
- Since new Times functions used static string in the original api,

the library keeps buffers for each process that open the library.
So, DON’T share the library base between process!

A large parts of this documentation comes from the original msql api
documentation which is ©1998 Hughes Technologies Pty Ltd.

msql.library is (C) Copyright 1999 Christophe Sollet, All rights Reserved

msql 4 / 36

1.3 msql.library/--rexxhost--

HOST INTERFACE (V4)
msql.library provides an ARexx function host interface that enables
ARexx programs to access mSQL Database server. The functions provided
by the interface are directly related to the functions described
herein.

The function host library vector is located at offset -30 from the
library. This is the value you provide to ARexx in the AddLib()
function call.

FUNCTIONS
MsqlAllocConnection ()
MsqlClose (MSQLCONNECTION)
MsqlConnect (MSQLCONNECTION, STRING)
MsqlCreateDB (MSQLCONNECTION, STRING)
MsqlDataSeek (M_RESULT, INT)
MsqlDropDB (MSQLCONNECTION, STRING)
MsqlFetchField (M_RESULT)
MsqlFetchRow (M_RESULT)
MsqlFieldSeek (M_RESULT, INT)
MsqlFreeConnection (MSQLCONNECTION)
MsqlFreeResult (M_RESULT)
MsqlGetErrMsg (MSQLCONNECTION)
MsqlGetHostInfo (MSQLCONNECTION)
MsqlGetProtoInfo (MSQLCONNECTION)
MsqlGetServerInfo (MSQLCONNECTION)
MsqlListDBs (MSQLCONNECTION)
MsqlListFields (MSQLCONNECTION, STRING)
MsqlListIndex (MSQLCONNECTION, STRING, STRING)
MsqlListTables (MSQLCONNECTION)
MsqlLoadConfigFile (MSQLCONNECTION, STRING)
MsqlNumFields (M_RESULT)
MsqlNumRows (M_RESULT)
MsqlQuery (MSQLCONNECTION, STRING)
MsqlReloadAcls (MSQLCONNECTION)
MsqlSelectDB (MSQLCONNECTION, STRING)
MsqlShutdown (MSQLCONNECTION)
MsqlStoreResult (MSQLCONNECTION)

AREXX ONLY FUNCTIONS
MsqlGetField (M_ROW, POS)

Get the field value at POS of a row

MsqlGetFieldInfo (M_FIELD, TYPE)
Get info "TYPE" on a field
TYPE can be: - "name"

- "table"
- "type"
- "length"

MsqlIsNotNull (M_FIELD)
MsqlIsUnique (M_FIELD)

This two functions test flags of the field.

msql 5 / 36

NOTES:
The following functions return true on success:

MsqlSelectDB
MsqlQuery
MsqlCreateDB
MsqlDropDB
MsqlGetProtoInfo
MsqlReloadAcls
MsqlDataSeek
MsqlFieldSeek
MsqlLoadConfigFile

1.4 msql.library/MsqlAddMHookA

NAME
MsqlAddMHookA -- add a library monitoring hook. (V5)
MsqlAddMHook -- Varargs stub for MsqlAddMHook. (V5)

SYNOPSIS
success = MsqlAddMHookA(hook, TagItems)
D0 A0 A1

BOOL MsqlAddMHookA(struct Hook *, struct TagItems *);

success = MsqlAddMHook(hook, Tag1, ...)

BOOL MsqlAddMHook(struct Hook *, ULONG, ...);

FUNCTION
This function adds a callback hook to monitor each library call.
The hook will be called at each library function call and
return.

Hooks are called with the following parameters:

- A0: struct Hook *: your struct Hook

- A2: APTR: your callback handle

- A1: struct HookMessage *: a pointer to an initialized struct
HookMessage describing the called library function.

INPUTS
hook - callback hook
TagItems - none are defined for now, must be NULL

RESULT
success - TRUE on success

EXAMPLE

NOTES

msql 6 / 36

The struct HookMessage is read-only!

BUGS

SEE ALSO

MsqlRemMHook()

1.5 msql.library/MsqlAllocConnection

NAME
MsqlAllocConnection -- Alloc a MsqlConnection structure

SYNOPSIS
mc = MsqlAllocConnection()
D0

struct MsqlConnection *MsqlAllocConnection(void);

FUNCTION
Alloc an MsqlConnection structure used by all other function.
A MsqlConnection structure must be created by each task that
access the msql.library

INPUTS
none

RESULT
mc - A ready-to-use structure or NULL on error.

EXAMPLE

NOTES
You must use MsqlFreeConnection to free the returned structure.

BUGS

SEE ALSO

MsqlFreeConnection()

1.6 msql.library/MsqlClose

NAME
MsqlClose -- close a connection to the mSQL engine

SYNOPSIS
MsqlClose(mc)

A1

msql 7 / 36

void MsqlClose(struct MsqlConnection *);

FUNCTION
The connection to the mSQL engine can be closed using msqlClose()
The function must be called with the MsqlConnection structure
returned by

MsqlConnect()
when the initial connection was made.

INPUTS
mc - a "connected" MsqlConnection

RESULT

EXAMPLE

NOTES

BUGS

SEE ALSO

MsqlConnect()

1.7 msql.library/MsqlConnect

NAME
MsqlConnect -- Forms an interconnection with the mSQL engine

SYNOPSIS
mc = MsqlConnect(mc, host)
D0 A1 A0

struct MsqlConnection *
MsqlConnect(struct MsqlConnection *, char *);

FUNCTION
msqlConnect() forms an interconnection with the mSQL engine. The
host argument is the name or IP address of the host running the
mSQL server. If NULL is specified as the host argument, a
connection is made to a server running on the localhost using the
UNIX domain socket /dev/msqld. If an error occurs, NULL is
returned and the external variable msqlErrMsg (returned by

MsqlGetErrMsg()
) will contain an appropriate text message.

If the connection is made to the server, the MsqlConnection is
filled with connecton information.

INPUTS
mc - a MsqlConnection structure returned by

MsqlAllocConnection()

msql 8 / 36

host - the name or IP address of the host running the ←↩
mSQL server

RESULT
mc - same as the input mc or NULL on error

EXAMPLE

NOTES

BUGS

SEE ALSO

MsqlClose()

1.8 msql.library/MsqlCopyDB

NAME
MsqlCopyDB -- Undocumented (V3)

SYNOPSIS
error = MsqlCopyDB(mc, fromDB, toDB)
D0 A0 A1 A2

int MsqlCopyDB(struct MsqlConnection *, char *, char *);

FUNCTION
Undocumented.

INPUTS
mc - a "connected" MsqlConnection structure
fromDB - ? :)
toDB - ? :)

RESULT
error - -1 on error.

EXAMPLE

NOTES

BUGS

SEE ALSO

MsqlMoveDB()

1.9 msql.library/MsqlCreateDB

NAME
MsqlCreateDB -- Create a new database

msql 9 / 36

SYNOPSIS
error = MsqlCreateDB(mc, name)
D0 A1 A0

int MsqlCreateDB(struct MsqlConnection *, char *);

FUNCTION
Create a new database on the connected server

INPUTS
mc - a MsqlConnection
name - database name

RESULT
error - -1 on error

EXAMPLE

NOTES
It’s an Admin function! This function isn’t documented in the
original API.

BUGS

SEE ALSO

1.10 msql.library/MsqlDataSeek

NAME
MsqlDataSeek -- Move the position of the data cursor

SYNOPSIS
MsqlDataSeek(result, pos)

A0 D0

void MsqlDataSeek(m_result *, int);

FUNCTION
The m_result structure contains a client side "cursor" that holds
information about the next row of data to be returned to the
calling program. MsqlDataSeek() can be used to move the position
of the data cursor. If it is called with a position of 0, the
next call to

MsqlFetchRow()
will return the first row of data

returned by the server. The value of pos can be anywhere from 0
(the first row) and the number of rows in the table. If a seek is
made past the end of the table, the next call to

MsqlFetchRow()
will return a NULL.

INPUTS
result - the m_result stucture to seek
pos - the position (0 to number of rows)

msql 10 / 36

RESULT
none

EXAMPLE

NOTES

BUGS

SEE ALSO

MsqlFetchRow()

1.11 msql.library/MsqlDateOffset

NAME
MsqlDateOffset -- Produce a relative date (V3)

SYNOPSIS
date = MsqlDateOffset(sdate, dOff, mOff, yOff)
D0 A0 D0 D1 D2

char *MsqlDateOffset(char *, int, int, int);

FUNCTION
The MsqlDateOffset() function allows you to generate an mSQL date
string that is a specified period before or after a given date.
This routine will determine the correct date based on the varying
days of month. It is also aware of leap years and the impact they
have on date ranges. The new date is calculated using the
specified date and an offset value for the day, month and year.
The example below would determine tomorrow’s date

~
clock = time();
today = MsqlUnixTimeToDate(clock);
tomorrow = MsqlDateOffset(today , 1 , 0 , 0);

INPUTS
sdate - starting date
dOff - day offset
mOff - month offset
yOff - year offset

RESULT
date - new date

EXAMPLE

NOTES
The returned string is statically declared in the API so you must
make a copy of it before you call the function again. Of course,
since msql.library is a shared library, each process have his own
buffer.

msql 11 / 36

BUGS

SEE ALSO

MsqlDiffTimes()
,
MsqlSumTimes()
,
MsqlDiffDates()

1.12 msql.library/MsqlDateToUnixTime

NAME
MsqlDateToUnixTime -- Convert mSQL date to an unix time value (V3)

SYNOPSIS
time = MsqlDateToUnixTime(date)
D0 A0

time_t MsqlDateToUnixTime(char *);

FUNCTION
MsqlDateToUnixDate() converts an mSQL date format string into a
UNIX time value. The mSQL date format is "DD-Mon-YYYY" (for
example "12-Jun-1997") while the returned value will be the number
of seconds since the UNIX epoch. The mSQL date routines will
assume the 20th century if only 2 digits of the year value are
presented. Although the valid range of mSQL dates is 31st Dec
4096bc to the 31st Dec 4096, the UNIX format cannot represent
dates prior to the 1st Jan 1970.

INPUTS

RESULT

EXAMPLE

NOTES

BUGS

SEE ALSO

MsqlUnixTimeToDate()
,
MsqlTimeToUnixTime()
,
MsqlUnixTimeToTime()

msql 12 / 36

1.13 msql.library/MsqlDiffDates

NAME
MsqlDiffDates -- determine days between two dates. (V3)

SYNOPSIS
nbday = MsqlDiffDates(date1, date2)
D0 A0 A1

int MsqlDiffDates(char *, char *);

FUNCTION
The MsqlDiffDates() function can be used to determine the number
of days between two dates. Date1 must be less than date2 and the
two dates must be valid mSQL date formatted strings. In
conjunction with the

MsqlDiffTimes()
function it is possible to

determine a complete time difference between two pairs of times
and dates.

INPUTS
date1 - a mSQL date formatted string.
date2 - another mSQL date formatted string.

RESULT
nbday - the difference between date1 & date2.

EXAMPLE

NOTES

BUGS

SEE ALSO

MsqlDateOffset()
,
MsqlSumTimes()
,
MsqlDiffTimes()

1.14 msql.library/MsqlDiffTimes

NAME
MsqlDiffTimes -- determine the time diff between time values (V3)

SYNOPSIS
time = MsqlDiffTimes(time1, time2)
D0 A0 A1

char *MsqlDiffTimes(char *, char *);

msql 13 / 36

FUNCTION
To determine the time difference between two time values, the
MsqlDiffTimes() function can be used. The two time values must be
mSQL time formatted text strings and the returned value is also an
mSQL time string. A restriction is placed on the times in that
time1 must be less than time2.

INPUTS
time1 - a mSQL time formatted string.
time2 - another mSQL time formatted string.

RESULT
time - the difference between time1 & time2.

EXAMPLE

NOTES
The returned string is statically declared in the API so you must
make a copy of it before you call the function again. Of course,
since msql.library is a shared library, each process have his own
buffer.

BUGS

SEE ALSO

MsqlSumTimes()
,
MsqlDateOffset()
,
MsqlDiffDates()

1.15 msql.library/MsqlDropDB

NAME
MsqlDropDB -- Drop a database

SYNOPSIS
error = MsqlDropDB(mc, name)
D0 A1 A0

int MsqlDropDB(struct MsqlConnection *, char *);

FUNCTION
Drop a database on the connected server

INPUTS
mc - a MsqlConnection
name - database name

RESULT
error - -1 on error

EXAMPLE

msql 14 / 36

NOTES
It’s an Admin function! This function isn’t documented in the
original API.

BUGS

SEE ALSO

1.16 msql.library/MsqlFetchField

NAME
MsqlFetchField -- Get information about the data fields selected

SYNOPSIS
field = MsqlFetchField(result)
D0 A0

m_field *MsqlFetchField(m_result *);

FUNCTION
Along with the actual data rows, the server returns information
about the data fields selected. This information is made
available to the calling program via the MsqlFetchField()
function. Like

MsqlFetchRow()
, this function returns one element

of information at a time and returns NULL when no further
information is available. The data is returned in a m_field
structure which contains the following information:

typedef struct
{

char *name, // name of field

*table; // name of table
int type, // data type of field

length, // length in bytes of field
flags; // attribute flags

} m_field;

Possible values for the type field are defined in msql.h. Please
consult the header file if you wish to interpret the value of the
type or flags field of the m_field structure.

INPUTS
result - a previously returned result structure

RESULT
field - data fields information or NULL when no further

information is available

EXAMPLE

NOTES

msql 15 / 36

BUGS

SEE ALSO

MsqlFetchRow()

1.17 msql.library/MsqlFetchRow

NAME
MsqlFetchRow -- Access individual db rows returned by a select

SYNOPSIS
row = MsqlFetchRow(result)
D0 A0

m_row MsqlFetchRow(m_result *);

FUNCTION
The individual database rows returned by a select are accessed
via the MsqlFetchRow() function.
The data is returned in a variable of type m_row which contains a
char pointer for each field in the row. For example, if a select
statement selected 3 fields from each row returned, the value of
the 3 fields would be assigned to elements [0], [1], and [2] of
the variable returned by MsqlFetchRow().

INPUTS
result - the data to fetch

RESULT
row - a row structure or NULL when the end of the data has been

reached

EXAMPLE

NOTES
A NULL value is represented as a NULL pointer in the row.

BUGS

SEE ALSO

1.18 msql.library/MsqlFieldSeek

NAME
MsqlFieldSeek -- Move the field data cursor

SYNOPSIS
MsqlFieldSeek(result, pos)

A0 D0

msql 16 / 36

void MsqlFieldSeek(m_result *, int);

FUNCTION
The result structure includes a "cursor" for the field data. It’s
position can be moved using the MsqlFieldSeek() function. See

MsqlDataSeek()
for further details.

INPUTS
result - the m_result structure to seek
pos - postion to move

RESULT
none

EXAMPLE

NOTES

BUGS

SEE ALSO

MsqlDataSeek()

1.19 msql.library/MsqlFreeConnection

NAME
MsqlFreeConnection -- Free a MsqlConnection structure

SYNOPSIS
MsqlFreeConnection(mc)

A0

void MsqlFreeConnection(stuct MsqlConnection *);

FUNCTION
Free a MsqlConnection structure returned by MsqlAllocConnection.

INPUTS
mc - a MsqlConnection

RESULT
none

EXAMPLE

NOTES

BUGS

SEE ALSO

MsqlAllocConnection()

msql 17 / 36

1.20 msql.library/MsqlFreeResult

NAME
MsqlFreeResult -- Free a query result

SYNOPSIS
MsqlFreeResult(result)

A0

void MsqlFreeResult(m_result *);

FUNCTION
When a program no longer requires the data associated with a
particular query result, the data must be freed using
MsqlFreeResult(). The result handle associated with the data, as
returned by

MsqlStoreResult()
is passed to MsqlFreeResult() to

identify the data set to be freed.

INPUTS
result - a m_result structure returned by

MsqlStoreResult()
RESULT

none

EXAMPLE

NOTES

BUGS

SEE ALSO

MsqlStoreResult()

1.21 msql.library/MsqlGetCharConf

NAME
MsqlGetCharConf -- Undocumented (used by msqladmin ?) (V3)

SYNOPSIS
x = MsqlGetCharConf(mc, y, z)
D0 A1 A0 A2

int MsqlGetCharConf(struct MsqlConnection *, char *, char *);

FUNCTION
Undocumented.

msql 18 / 36

INPUTS
mc - a MsqlConnection
y - ???
z - ???

RESULT
x - ???

EXAMPLE

NOTES
This is a private Msql API function. No information was given
about it.
This function is not part of the mSQL API. Any use
of this function is discouraged as the interface may
change in future releases

BUGS

SEE ALSO

1.22 msql.library/MsqlGetErrMsg

NAME
MsqlGetErrMsg -- Get an error message

SYNOPSIS
errmsg = MsqlGetErrMsg(mc)
D0 A0

char *MsqlGetErrMsg(struct MsqlConnection *);

FUNCTION
If a msql function failed, an error message will be stored in an
internal buffer. This function return a pointer on this buffer.

INPUTS
mc - a valid MsqlConnection structure

RESULT
errmsg - a null terminated string describing a previous error

EXAMPLE

NOTES
There is no guarantee as to the value returned from
MsqlGetErrMsg() after a successful operation.

BUGS

SEE ALSO

msql 19 / 36

1.23 msql.library/MsqlGetHostInfo

NAME
MsqlGetHostInfo -- Undocumented

SYNOPSIS
x = MsqlGetHostInfo(mc)
D0 A0

char *MsqlGetHostInfo(struct MsqlConnection *);

FUNCTION
Undocumented.

INPUTS
mc - a MsqlConnection

RESULT
x - ???

EXAMPLE

NOTES
This is a private Msql API function. No information was given
about it.

BUGS

SEE ALSO

1.24 msql.library/MsqlGetIntConf

NAME
MsqlGetIntConf -- Undocumented (used by msqladmin ?) (V3)

SYNOPSIS
x = MsqlGetIntConf(mc, y, z)
D0 A1 A0 A2

int MsqlGetIntConf(struct MsqlConnection *, char *, char *);

FUNCTION
Undocumented.

INPUTS
mc - a MsqlConnection
y - ???
z - ???

RESULT
x - ???

EXAMPLE

msql 20 / 36

NOTES
This is a private Msql API function. No information was given
about it.
This function is not part of the mSQL API. Any use
of this function is discouraged as the interface may
change in future releases

BUGS

SEE ALSO

1.25 msql.library/MsqlGetProtoInfo

NAME
MsqlGetProtoInfo -- Undocumented

SYNOPSIS
x = MsqlGetProtoInfo(mc)
D0 A0

int MsqlGetProtoInfo(struct MsqlConnection *);

FUNCTION
Undocumented.

INPUTS
mc - a MsqlConnection

RESULT
x - ???

EXAMPLE

NOTES
This is a private Msql API function. No information was given
about it.

BUGS

SEE ALSO

1.26 msql.library/MsqlGetSequenceInfo

NAME
MsqlGetSequenceInfo -- (V3)

SYNOPSIS
seq = MsqlGetSequenceInfo(mc, table)
D0 A0 A1

m_seq *MsqlGetSequenceInfo(struct MsqlConnection *, char *);

msql 21 / 36

FUNCTION

INPUTS

RESULT

EXAMPLE

NOTES

BUGS

SEE ALSO

1.27 msql.library/MsqlGetServerInfo

NAME
MsqlGetServerInfo -- Undocumented

SYNOPSIS
x = MsqlGetServerInfo(mc)
D0 A0

char *MsqlGetServerInfo(struct MsqlConnection *);

FUNCTION
Undocumented.

INPUTS
mc - a MsqlConnection

RESULT
x - ???

EXAMPLE

NOTES
This is a private Msql API function. No information was given
about it.

BUGS

SEE ALSO

1.28 msql.library/MsqlGetServerStats

NAME
MsqlGetServerStats -- Private (V3)

SYNOPSIS
error = MsqlGetServerStats(mc, buffer, size)

msql 22 / 36

D0 A0 A1 D0

int MsqlGetServerStats(struct MsqlConnection *, char *, ULONG);

FUNCTION
Undocumented.

INPUTS
mc - a "connected" MsqlConnection structure
buffer - output buffer
size - size of buffer

RESULT
error - -1 on error

EXAMPLE

NOTES
Original API writes to the standard output, not in a buffer.

BUGS

SEE ALSO

1.29 msql.library/MsqlListDBs

NAME
MsqlListDBs -- return a list of existing database

SYNOPSIS
result = MsqlListDBs(mc)
D0 A0

m_result *MsqlListDBs(struct MsqlConnection *);

FUNCTION
A list of the databases known to the mSQL engine can be obtained
via the MsqlListDBs() function. A result handle is returned to
the calling program that can be used to access the actual
database names. The individual names are accessed by calling

MsqlFetchRow()
passing it the result handle. The m_row data

structure returned by each call will contain one field being the
name of one of the available databases. As with all functions
that return a result handle, the data associated with the result
must be freed when it is no longer required using

MsqlFreeResult()
.

INPUTS
mc - a "connected" MsqlConnection

RESULT
result - data containing the list of known dbs.

EXAMPLE

msql 23 / 36

NOTES

BUGS

SEE ALSO

MsqlFetchRow()
,
MsqlFreeResult()
,
MsqlListTables()

1.30 msql.library/MsqlListFields

NAME
MsqlListFields -- Get information about table fields

SYNOPSIS
result = MsqlListFields(mc, tableName)
D0 A0 A1

m_result *MsqlListFields(struct MsqlConnection *, char *);

FUNCTION
Information about the fields in a particular table can be
obtained using MsqlListFields(). The function is called with the
name of a table in the current database as selected using

MsqlSelectDB()
and a result handle is returned to the caller.

Unlike
MsqlListDBs()
and

MsqlListTables()
, the field information

is contained in field structures rather than data rows. It is
accessed using

MsqlFetchField()
. The result handle must be freed

when it is no longer needed by calling
MsqlFreeResult()
.

INPUTS
mc - a "connected" MsqlConnection
tableName - a null terminated string containing the name of the

table
RESULT

result - data about the table structure

EXAMPLE

NOTES

msql 24 / 36

BUGS

SEE ALSO

MsqlSelectDB()
,
MsqlFetchField()
,
MsqlFreeResult()

1.31 msql.library/MsqlListIndex

NAME
MsqlListIndex -- Get the structure of a table index

SYNOPSIS
result = MsqlListIndex(mc, tableName, index)
D0 A2 A0 A1

m_result *MsqlListIndex(struct MsqlConnection *, char *, char *);

FUNCTION
The structure of a table index can be obtained from the server
using the MsqlListIndex() function. The result table returned
contains one field.
The first row of the result contains the symbolic name of the
index mechanism used to store the index. Rows 2 and onwards
contain the name of the fields that comprise the index.
For example, if a compund index was defined as an AVL Tree index
and was based on the values of the fields first_name and
last_name, then the result table would look like:

row[0]
avl

first_name

last_name

Currently the only valid index type is ’avl’ signifying a memory
mapped AVL tree.

INPUTS
mc - a "connected" MsqlConnection
tableName - a null terminated string containing the name of the

table
index - a null terminated string containing the name of the index

RESULT
result - index information

EXAMPLE

msql 25 / 36

NOTES

BUGS

SEE ALSO

MsqlFreeResult()

1.32 msql.library/MsqlListTables

NAME
MsqlListTables -- return a table list of selected database

SYNOPSIS
result = MsqlListTables(mc)
D0 A0

m_result *MsqlListTables(struct MsqlConnection *);

FUNCTION
Once a database has been selected using

MsqlSelectDB()
, a list of

the tables defined in that database can be retrieved using
MsqlListTables(). As with

MsqlListDBs()
, a result handle is

returned to the calling program and the names of the tables are
contained in data rows where element [0] of the row is the name
of one table in the current database. The result handle must be
freed when it is no longer needed by calling

MsqlFreeResult()
.

INPUTS
mc - a "connected" MsqlConnection

RESULT
result - data containing a list of tables

EXAMPLE

NOTES

BUGS

SEE ALSO

MsqlFetchRow()
,
MsqlFreeResult()
,
MsqlSelectDB()
,

msql 26 / 36

MsqlListDBs()

1.33 msql.library/MsqlLoadConfigFile

NAME
MsqlLoadConfigFile -- Load a non-default configuration

SYNOPSIS
error = MsqlLoadConfigFile(mc, file)
D0 A1 A0

int MsqlLoadConfigFile(struct MsqlConnection *, char *);

FUNCTION
The MsqlLoadConfigFile() function can be used to load a non-
default configuration file into your client application. The
configuration file can include information such as the TCP/IP and
UNIX ports on which the desired mSQL server will be running. The
file to be loaded is determined by the value of the file
parameter. If the value of the parameter is new, the
MsqlLoadConfigFile() function would search for the file in the
following places (and in the order specified).

~
Inst_Dir/new
Inst_Dir/new.conf
new

~
That is, if a file called "new" exists in the installation
directory, it is loaded. Otherwise, an attempt will be made to
load a file called new.conf from the installation directory. If
that fails, the filename specified is assumed to be a complete,
absolute pathname and an attempt to open the file is made.

INPUTS
mc - a MsqlConnection
file - a configuration file

RESULT
error - 1 on failure, otherwise a value of 0 is returned

EXAMPLE

NOTES

BUGS

SEE ALSO

1.34 msql.library/MsqlMoveDB

msql 27 / 36

NAME
MsqlMoveDB -- Undocumented (V3)

SYNOPSIS
x = MsqlMoveDB(mc, fromDB, toDB)
D0 A0 A1 A2

int MsqlMoveDB(struct MsqlConnection *, char *, char *);

FUNCTION
Undocumented.

INPUTS
mc - a "connected" MsqlConnection structure.
fromDB - ?
toDB - ?

RESULT
x - ?

EXAMPLE

NOTES

BUGS

SEE ALSO

MsqlCopyDB()

1.35 msql.library/MsqlNumFields

NAME
MsqlNumFields -- Get the number of fields of a row

SYNOPSIS
num = MsqlNumFields(result)

int MsqlNumFields(m_result *);

FUNCTION
The number of fields returned by a query can be ascertained by
calling MsqlNumFields() and passing it the result handle. The
value returned by MsqlNumFields() indicates the number of
elements in the data vector returned by

MsqlFetchRow()
. It is

wise to check the number of fields returned before, as with all
arrays, accessing an element that is beyond the end of the data
vector can result in a segmentation fault (crash).

INPUTS
result - a m_result data structure

msql 28 / 36

RESULT
num - the number of fields.

EXAMPLE

NOTES
This function is not part of the msql.library but was defined
(#define) in msql/msql.h

BUGS

SEE ALSO

1.36 msql.library/MsqlNumRows

NAME
MsqlNumRows -- Get the number of rows of data

SYNOPSIS
num = MsqlNumRows(result)

int MsqlNumRows(m_result *);

FUNCTION
The number of rows returned by a query can be found by calling
MsqlNumRows() and passing it the result handle returned by

MsqlStoreResult()
. The number of rows of data sent as a result of

the query is returned as an integer value. If a select query
didn’t match any data, MsqlNumRows() will indicate that the
result table has 0 rows (note: earlier versions of mSQL returned
a NULL result handle if no data was found. This has been
simplified and made more intuitive by returning a result handle
with 0 rows of result data)

INPUTS
result - a m_result data structure

RESULT
num - the number of rows.

EXAMPLE

NOTES
This function is not part of the msql.library but was defined
(#define) in msql/msql.h

BUGS

SEE ALSO

msql 29 / 36

1.37 msql.library/MsqlQuery

NAME
MsqlQuery -- send a sql query to the mSQL engine

SYNOPSIS
error = MsqlQuerry(mc, query)
D0 A1 A0

int MsqlQuery(struct MsqlConnection *, char *);

FUNCTION
A query in SQL terminology is not the same as a query in the
English language. In English, the word query relates to asking a
question whereas in SQL a query is a valid SQL command. It is a
common mistake that people believe that the msqlQuery function can
only be used to submit SELECT commands to the database engine.
In reality, msqlQuery can be used for any valid mSQL command
including SELECT, DELETE, UPDATE etc.
Queries are sent to the engine over the connection associated
with mc as plain text strings using MsqlQuery(). As usual, a
returned value of -1 indicates an error and msqlErrMsg will be
updated.
If the query generates output from the engine, such as a SELECT
statement, the data is buffered in the API waiting for the
application to retrieve it. If the application submits another
query before it retrieves the data using msqlStoreResult(), the
buffer will be overwritten by any data generated by the new
query.

In previous versions of mSQL, the return value of msqlQuery() was
either -1 (indicating an error) or 0 (indicating success). mSQL2
adds to these semantics by providing more information back to the
client application via the return code. If the return code is
greater than 0, not only does it imply success, it also indicates
the number of rows "touched" by the query (i.e. the number of
rows returned by a SELECT, the number of rows modified by an
update, or the number of rows removed by a delete).

INPUTS
mc - a "connected" MsqlConnection.
query - a SQL query.

RESULT
error - == -1 on error.

EXAMPLE

NOTES

BUGS

SEE ALSO

msql 30 / 36

1.38 msql.library/MsqlReloadAcls

NAME
MsqlReloadAcls -- Force server to reload access list

SYNOPSIS
x = MsqlReloadAcls(mc)
D0 A0

int MsqlReloadAcls(struct MsqlConnection *);

FUNCTION
Force the server to reload the access list

INPUTS
mc - a MsqlConnection

RESULT
error - -1 on error

EXAMPLE

NOTES
It’s an Admin function! This function isn’t documented in the
original API.

BUGS

SEE ALSO

1.39 msql.library/MsqlRemMHook

NAME
MsqlRemMHook -- remove a library monitoring hook. (V5)

SYNOPSIS
MsqlRemMHook(hook)

A0

void MsqlRemMHook(struct Hook *);

FUNCTION
Remove a callback hook previously installed by

MsqlAddMHookA()
.

INPUTS
hook - an installed callback hook

RESULT
none

EXAMPLE

msql 31 / 36

NOTES
You have to call MsqlMRemHook for each hook you have installed
before closing the msql.library.

BUGS

SEE ALSO

MsqlAddMHookA()

1.40 msql.library/MsqlSelectDB

NAME
MsqlSelectDB -- instructs engine which database is to be accessed

SYNOPSIS
error = MsqlSelectDB(mc, dbName)
D0 A1 A0

int MsqlSelectDB(struct MsqlConnection *, char *);

FUNCTION
Prior to submitting any queries, a database must be selected.
msqlSelectDB() instructs the engine which database is to be
accessed. msqlSelectDB() is called with the MsqlConnection
returned by

MsqlConnect()
and the name of the desired database.

A return value of -1 indicates an error with msqlErrMsg set to a
text string representing the error. MsqlSelectDB() may be called
multiple times during a program’s execution. Each time it is
called, the server will use the specified database for future
accesses. By calling msqlSelectDB() multiple times, a program can
switch between different databases during its execution.

INPUTS
mc - a "connected" MsqlConnection.
dbName - the name of the database to select.

RESULT
error - =-1 on error.

EXAMPLE

NOTES

BUGS

SEE ALSO

msql 32 / 36

1.41 msql.library/MsqlShutdown

NAME
MsqlShutdown -- Shutdown a mSQL server

SYNOPSIS
x = MsqlShutdown(mc)
D0 A0

int MsqlShutdown(struct MsqlConnection *);

FUNCTION
Shutdown the connected server

INPUTS
mc - a MsqlConnection

RESULT
error - -1 on error

EXAMPLE

NOTES
It’s an Admin function! This function isn’t documented in the
original API.

BUGS

SEE ALSO

1.42 msql.library/MsqlStoreResult

NAME
MsqlStoreResult -- Store a query result

SYNOPSIS
result = MsqlStoreResult(mc)
D0 A0

m_result *MsqlStoreResult(struct MsqlConnection *);

FUNCTION
Data returned by a SELECT query must be stored before another
query is submitted or it will be removed from the internal API
buffers. Data is stored using the MsqlStoreResult() function
which returns a result handle to the calling routines. The result
handle is a pointer to a m_result structure and is passed to
other API routines when access to the data is required. Once the
result handle is allocated, other queries may be submitted. A
program may have many result handles active simultaneously.

INPUTS
mc - a MsqlConnection

msql 33 / 36

RESULT
result - result handle of the previous request

EXAMPLE

NOTES

BUGS

SEE ALSO

MsqlFreeResult()

1.43 msql.library/MsqlSumTimes

NAME
MsqlSumTimes -- Sum two mSQL time (V3)

SYNOPSIS
time = MsqlSumTimes(time1, time2)
D0 A0 A1

char *MsqlSumTimes(char *, char *);

FUNCTION
The MsqlSumTimes() routine provides a mechanism for performing
addition between two mSQL time formatted strings. A literal
addition of the values is returned to the calling routine in mSQL
time format. As an example, calling MsqlSumTimes with the values
"1:30:25" and "13:15:40" would return "14:46:05".

INPUTS
time1 - a mSQL time formatted string.
time2 - another mSQL time formatted string.

RESULT
time - a literal addition of time1 & time2.

EXAMPLE

NOTES
The returned string is statically declared in the API so you must
make a copy of it before you call the function again. Of course,
since msql.library is a shared library, each process have his own
buffer.

BUGS

SEE ALSO

MsqlDiffTimes()
,
MsqlDateOffset()
,

msql 34 / 36

MsqlDiffDates()

1.44 msql.library/MsqlTimeToUnixTime

NAME
MsqlTimeToUnixTime -- Convert mSQL time to unix time (V3)

SYNOPSIS
time = MsqlTimeToUnixTime(date)
D0 A0

time_t MsqlTimeToUnixTime(char *);

FUNCTION
MsqlTimeToUnixTime() converts an mSQL time value to a standard
UNIX time value. The mSQL time value must be a character string
in the 24 hour format of "HH:MM:SS" and the returned value will be
the number of seconds since 1 Jan 1970 (the normal UNIX format).

INPUTS

RESULT

EXAMPLE

NOTES

BUGS

SEE ALSO

MsqlUnixTimeToDate()
,
MsqlUnixTimeToTime()
,
MsqlDateToUnixTime()

1.45 msql.library/MsqlUnixTimeToDate

NAME
MsqlUnixTimeToDate -- Convert Unix time to mSQL date string (V3)

SYNOPSIS
date = MsqlUnixTimeToDate(clock)
D0 D0

char *MsqlUnixTimeToDate(time_t);

FUNCTION
MsqlUnixTimeToDate() converts a standard UNIX time value to an

msql 35 / 36

mSQL date string. The time value is specified as seconds since the
UNIX epoch (1st Jan 1970) while the mSQL date string will contain
the date formatted as "DD-Mon-YYYY" (e.g. "12-Jun-1997"). The
returned string is statically declared in the API so you must make
a copy of it before you call the function again.

INPUTS
clock - the time to convert

RESULT
date - the clock "value" in a mSQL date format

EXAMPLE

NOTES
The returned string is statically declared in the API so you must
make a copy of it before you call the function again. Of course,
since msql.library is a shared library, each process have his own
buffer.

BUGS

SEE ALSO

MsqlTimeToUnixTime()
,
MsqlUnixTimeToTime()
,
MsqlDateToUnixTime()

1.46 msql.library/MsqlUnixTimeToTime

NAME
MsqlUnixTimeToTime -- Convert Unix time to mSQL time format (V3)

SYNOPSIS
time = MsqlUnixTimeToTime(clock)
D0 D0

char *MsqlUnixTimeToTime(time_t);

FUNCTION
MsqlUnixTimetoTime() converts a UNIX time value (seconds since the
UNIX epoch) into a character string representing the same time in
mSQL time format (i.e. "HH:MM:SS" 24 hour format).

INPUTS
clock - the time to convert

RESULT
time - the clock value in a mSQL time string format.

EXAMPLE

NOTES

msql 36 / 36

The returned string is statically declared in the API so you must
make a copy of it before you call the function again. Of course,
since msql.library is a shared library, each process have his own
buffer.

BUGS

SEE ALSO

MsqlUnixTimeToDate()
,
MsqlTimeToUnixTime()
,
MsqlDateToUnixTime()

	msql
	msql.doc
	msql.library/--background--
	msql.library/--rexxhost--
	msql.library/MsqlAddMHookA
	msql.library/MsqlAllocConnection
	msql.library/MsqlClose
	msql.library/MsqlConnect
	msql.library/MsqlCopyDB
	msql.library/MsqlCreateDB
	msql.library/MsqlDataSeek
	msql.library/MsqlDateOffset
	msql.library/MsqlDateToUnixTime
	msql.library/MsqlDiffDates
	msql.library/MsqlDiffTimes
	msql.library/MsqlDropDB
	msql.library/MsqlFetchField
	msql.library/MsqlFetchRow
	msql.library/MsqlFieldSeek
	msql.library/MsqlFreeConnection
	msql.library/MsqlFreeResult
	msql.library/MsqlGetCharConf
	msql.library/MsqlGetErrMsg
	msql.library/MsqlGetHostInfo
	msql.library/MsqlGetIntConf
	msql.library/MsqlGetProtoInfo
	msql.library/MsqlGetSequenceInfo
	msql.library/MsqlGetServerInfo
	msql.library/MsqlGetServerStats
	msql.library/MsqlListDBs
	msql.library/MsqlListFields
	msql.library/MsqlListIndex
	msql.library/MsqlListTables
	msql.library/MsqlLoadConfigFile
	msql.library/MsqlMoveDB
	msql.library/MsqlNumFields
	msql.library/MsqlNumRows
	msql.library/MsqlQuery
	msql.library/MsqlReloadAcls
	msql.library/MsqlRemMHook
	msql.library/MsqlSelectDB
	msql.library/MsqlShutdown
	msql.library/MsqlStoreResult
	msql.library/MsqlSumTimes
	msql.library/MsqlTimeToUnixTime
	msql.library/MsqlUnixTimeToDate
	msql.library/MsqlUnixTimeToTime

